Math 365
Section 6.4

Problem 1
Prove \(\sqrt{5} \) is irrational.

Problem 2
Prove the sum of a rational number and an irrational number is an irrational number.

Problem 3
Prove the product of any rational number and any irrational number is an irrational number.

Problem 4
Determine which of the following represent irrational numbers:

a) \(\sqrt{51} \)
b) \(\sqrt{64} \)
c) \(\sqrt{324} \)
d) \(\sqrt{325} \)
e) \(\sqrt{2} - \frac{2}{\sqrt{2}} \)
f) \(\sqrt{8} / \sqrt{2} \)
g) \(1/1 + \sqrt{2} \)
h) \(4/\sqrt{2} - \sqrt{2} \)
i) \((\sqrt{2})^{-4} \)

Problem 5
Find an irrational number between 0.53 and 0.54.
Problem 6

Without using a calculator or doing any computation, determine if $\sqrt[3]{3} = 3.605$. Explain why or why not.

Problem 7

Pi (π) is an irrational number. Could $\pi = \frac{22}{7}$? Why or why not?

Problem 8

If R is the set of real numbers, Q is the set of rational numbers, I is the set of integers, S is the set of irrational numbers, and N is the set of natural numbers, complete the following table by placing checkmarks in the appropriate columns.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>Q</th>
<th>I</th>
<th>S</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c)</td>
<td>-7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d)</td>
<td>$\sqrt{6}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e)</td>
<td>$\frac{1}{3}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Problem 9

Write each of the following in simplest form.

a) $\sqrt[3]{363}$

b) $\sqrt[3]{96}$

c) $\sqrt[3]{-320}$

d) $\sqrt[11]{\frac{729a^6}{b^{11}}}$

Problem 10

Find the missing terms of the following geometric sequence:

5, ____, ____ , 10