Section L.1: Introduction to Logic

Logic is the science of correct reasoning and making valid conclusions from a collection of statements.

Definition: A statement is a declarative sentence that is either true or false but not both.

Example: Which of the following would be a statement?

A) Math is fun.
 - no

B) 2 + 4 = 6
 - yes

C) What time is it?
 - no

D) There are 20 students in this classroom.
 - yes

E) Andy Murray is the 2nd best tennis player in the world.
 - no

F) Roger Federer won the French open in 2009.
 - yes
Definition: A compound statement is a collection of simple statements joined together with connectives: "and" (conjunction), "or" (disjunction), or "not" (negation).

Example: $2 + 4 = 6$ and $2 \times 10 = 8$

$2 + 4 = 6$ or $2 \times 10 = 8$

Definition: A conjunction is a statement of the form "p and q" and is written symbolically as $p \land q$.

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \land q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

False.
Definition: A disjunction is a statement of the form "p or q" and is written symbolically as $p \lor q$.

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \lor q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Inclusive or.

Definition: A negation is a statement of the form "not p" and is written symbolically as $\neg p$.

<table>
<thead>
<tr>
<th>p</th>
<th>$\neg p$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
Example: Express the following compound statements with symbolic notation.

\[t: \text{The shirt was bought from Target.} \quad b: \text{The shirt is blue.} \]

\[s: \text{The shirt is a short sleeve shirt.} \]

A) The shirt was bought from Target and it was blue.

\[t \land b = b \land t \]

B) The shirt was blue or it had short sleeves.

\[b \lor s \]

C) The shirt was not short sleeves and it was blue.

\[\sim s \land b \]

D) The short sleeve blue shirt was not bought at target.

\[s \land b \land \sim t \]
Example: Use the statements r, f, and n to express the following compound statements in words.

r: The truck is red.
n: The truck is new.

f: The truck is a Ford.

A) $n \land r \land \sim f$
The new red truck is not a Ford.

B) $\sim r \lor f$
The truck is not red or it is a Ford.

C) $n \land (r \lor f)$
The new truck is red or a Ford.