Section 6.4: Permutation and Combinations

Standard Deck of Cards: A deck of cards has 4 suits: diamonds, hearts, clubs, and spades. The suits of diamonds and hearts are both red and the suits of clubs and spades are both black. Each suit has the following denominations: Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, and King. The Jacks, Queens and Kings are also called face cards.

Definition: The number of permutations, \(P(n, r) \), of \(n \) distinct items of which \(r \) objects are chosen to be placed in an ordered setting, i.e. row, list,..., is given by \(P(n, r) = \frac{n!}{(n-r)!} \).

Definition: The number of combinations, \(C(n, r) \), of \(n \) distinct items of which \(r \) objects are chosen to be placed in an unordered setting is given by
\[
C(n, r) = \frac{n!}{(n-r)!r!}
\]

Example: Compute: \(C(10, 3) = 120 \) \(\quad P(10, 3) = 720 \)

<table>
<thead>
<tr>
<th>Combinations</th>
<th>Permutations</th>
<th>Multiplication Principle</th>
</tr>
</thead>
<tbody>
<tr>
<td>No repetitions</td>
<td>No repetitions</td>
<td>Reps. or no reps.</td>
</tr>
<tr>
<td>Order is not important</td>
<td>Order is important</td>
<td>Order is important</td>
</tr>
<tr>
<td>groups</td>
<td>groups with titles</td>
<td>seating charts</td>
</tr>
<tr>
<td>samples</td>
<td>seating charts</td>
<td>codes</td>
</tr>
<tr>
<td>card hands</td>
<td>numbers</td>
<td></td>
</tr>
</tbody>
</table>
Example: How many different batting orders are possible for a baseball team that has 15 players?

\[P(15, 9) \]

Example: How many different ways can 4 books be selected from a pile of 8 different books and arranged on a shelf?

\[P(8, 4) \]

Example: How many ways can you select 4 books to read next week from a pile of 8 different books?

\[C(8, 4) \]

Example: Six people are to be selected to attend a conference. They are selected from a group that includes 12 freshmen, 9 sophomores, and 10 juniors. How many ways can this be done if

A) all freshmen are selected?

\[C(12, 6) \]

B) exactly 2 freshmen and exactly 4 sophomores are selected?

\[C(12, 2) \cdot C(9, 4) \]

C) all freshmen or all sophomores are selected?

\[C(12, 6) + C(9, 6) \]

D) all freshmen or sophomores are selected?

\[C(21, 6) \]
E) exactly 2 sophomores and exactly 3 freshmen are selected?

\[C(9, 2) \cdot C(12, 3) \cdot C(10, 1) \]

F) exactly 4 freshmen are selected?

\[C(12, 4) \cdot C(19, 2) \]

G) exactly 2 sophomores are selected?

\[C(9, 2) \cdot C(22, 4) \]
1) At least 4 freshmen are selected?

$$\begin{align*}
\text{F} & \quad 12 \\
4 & \quad 2 \\
5 & \quad 1 \\
6 & \quad 0 \\
\text{Total} & = 25 \\
\end{align*}$$

$$c(12, 4) \cdot c(19, 2) + c(12, 5) \cdot c(19, 1) + c(12, 6) \cdot c(19, 0)$$

J) at least one freshman is selected?

$$\begin{align*}
\text{F} & \quad 12 \\
1 & \quad 5 \\
2 & \quad 4 \\
3 & \quad 3 \\
4 & \quad 2 \\
5 & \quad 1 \\
\text{Total} - \text{don't want} & = 36 \\
C(31, 6) - c(12, 6) \cdot c(19, 0)
\end{align*}$$

Example: How many ways can you get exactly 4 hearts or exactly 3 spades cards in a 6 card hand?

$$n(A \cup B) = n(A) + n(B) - n(\text{A and B})$$

Hearts other
Spades star.

$$c(13, 4) \cdot c(39, 2) + c(13, 3) \cdot c(39, 3) = 0$$

Example: From a group of 9 people. How many ways can 2 subcommittees be formed where one has 4 people and the other has 3 people.

can be in both committees
$$C(9, 4) \cdot C(9, 3)$$

can not be in both
$$\begin{align*}
C(9, 4) \cdot C(5, 3) \\
& \quad C(9, 3) \cdot C(6, 4)
\end{align*}$$
Example: 100 students are taking a bus trip. How many different ways can the teacher set up a seating chart for the first bus if the bus holds 30 students?

\(\binom{100}{30} \)

Distinct Rearrangements

How many distinct rearrangements are there for the letters in these words?

kat

\[3 \cdot 2 \cdot 1 = 3! \]

kate

\[\frac{4 \cdot 3 \cdot 2 \cdot 1}{2!} = \frac{4!}{2!} \]

katee

\[\frac{5!}{3!} \]

\[\frac{5!}{1! \cdot 1! \cdot 3!} \]
Example: How many ways can the letters of the word mississippi be rearranged?

\[
\frac{11!}{4! \cdot 4! \cdot 2!}
\]

Example: How many ways can the letters of the word Mathematical be rearranged?

\[
\frac{12!}{3! \cdot 2!}
\]

Example: 7 people are asked to each pick a number from 1 to 20. How many ways can exactly 4 of the people pick a number bigger than 13?
Example: A group has 12 guys and 10 girls. How many pictures are possible that contain 7 people in a row if there are exactly 4 boys in the picture?

\[
\binom{7}{4} \left(\frac{12 \cdot 11 \cdot 10 \cdot 9\cdot 10 \cdot 9 \cdot 8}{6 \cdot 6 \cdot 6 \cdot 5 \cdot 5 \cdot 5} \right)
\]

\[
\frac{7!}{4!3!} \cdot \left(\frac{12 \cdot 11 \cdot 10 \cdot 9\cdot 10 \cdot 9 \cdot 8}{6 \cdot 6 \cdot 6 \cdot 5 \cdot 5 \cdot 5} \right)
\]

\[
\binom{12}{4} \cdot \binom{10}{3} \cdot 7!
\]

Example: Your instructor told you that there will be 3 questions with the answer A, 2 questions with the answer B, 1 question with the answer C and 2 questions with the answer D on the 8 question multiple choice question exam given next week. Using this information, how many ways could you answer the exam?

\[
\frac{8!}{3!2!2!}
\]

\[
\binom{8}{3} \cdot \binom{5}{2} \cdot \binom{3}{1} \cdot \binom{2}{2}
\]